so ist es, Baujahr/Monat und mit was versucht zu loeschen? Denn abhaengig vom Steuergeraet SRS gehn nicht alle Geraete. z B das B800 aus China geht nur ~ 1994 - 2003.
Beiträge von shogun
-
-
weitere BMW Modelle https://shark.armchair.mb.ca/~dave/BMW/ E23, E28, E30, E31, E32, E34, K1100
-
Julian, siehe Sektion Innenraum 6332 im Stromlaufplan Modelljahr 1998 E36 https://web.archive.org/web/20…/Schaltplan/e36schalt.pdf
-
Paar Liter sollten reichen, wenn Du die Pumpe rausnimmst, senkt sich der Level ja auch noch etwas, und wenn die neue Pumpe reinkommt, geht es wieder so hoch, aber es wird nichts ueber den Rand fliessen
-
Baujahr/Monat? Falsche Benzinpumpe eingebaut? Unterschied E36 Pumpeneinheiten ab/vor 02/1995 . Hier Bilder der beiden Pumpen ab 02/1995 16146758736 https://www.ecstuning.com/b-ge…ts/fuel-pump/16146758736/ bis 02/1995 16141182842 https://www.ecstuning.com/b-co…uel-pump/16141182842~vdo/
Ich vermute, bei Deinem Baujahr/Monat wurde der Schlauch seitens BMW IN den Tank verlegt, weshalb du außerhalb keinen mehr findest und die andere Pumpe da rein muss.
War vorher eine blaue drin?
-
Bevor Du jetzt anfaengst auf Verdacht zu Tauschen, besser erst mal den Fehlerspeicher auslesen und dann gezielt das Teil tauschen/reparieren, das angezeigt wird.
Gibt ja hier im Forum einige, die das machen fuer einen kleinen Ubulus, wenn Du angibst in welcher Gegend Du wohnst bzw wie weit Du fahren willst von Dir zum Auslesen.
-
Systembeschreibung in Englisch, 11 Seiten zum Downloaden E36 lock system
-
Irgendwie werde ich aus deinem Text nicht schlau, wer ist denn die Quelle dafür?
Bimmerforums thread fuel level sensor
siehe auch Seite 8 in diesem Trainingsmaterial https://www.rfdm.com/Daniel/MR…us/pdf/part1driverino.pdf
Fuel gauge: 2 lever type floats wired in SERIES provide the input for the fuel gauge display. When the fuel reserve threshold is reached , the low fuel warning LED is iluminated.
Seite 14 zeigt Daten fuer KI Test Nr. 06
fuel gauge.......................hex value , display of hexadecimal codes in relation to gauge position
A (empty)..........................0d
end of reserve....................37
B......................................54
C......................................5c
D center............................4f-23
E......................................1e
Test 14 software reset: the reset must be carried out if any faults are present that are not plausible before any components are replaced. After the reset, the system will exit the TEST mode and the lock will be reactivated. -
Nachtrag, siehe auch hier Seite 8 driver info system
Fuel gauge: 2 lever type floats wired in Series provide the input for the fuel gauge display. When the fuel reserve threshold is reached , the low fuel warning LED is iluminated.
Seite 14 zeigt auch noch den KI test Nr. 06
fuel gauge.......................hex value , display of hexadecimal codes in relation to gauge position
A empty...............................0d
end of reserve....................37
B............................................54
C............................................5c
D center................................4f-23
E.............................................1e
Test 14 software reset
the reset must be carried out if any faults are present that are not plausible before any components are replaced. After the reset, the system will exit the TEST mode and the lock will be reactivated.
-
und wieder Nachschub https://www.bimmer-service.com/bmw-3-e36/
-
Mach mal einen Test des Kombinstrumentes, damit kannst Du Testen, ob es evtl. am KI liegt. Bei dem Test sollte die Anzeige fuer die Tankbefuellung bis voll gehn, wenn die Nadel nicht auf voll geht, liegt es am KI.
KI Test KI Test
-
die Funktionsweise der beiden Kraftstoffstandgeber wurde gerade auf einem anderen Forum erklaert, deshalb hier die Antwort nach fast 20 Jahren:
Jeder Füllstandgeber ist funktionell identisch und misst auf seiner Seite von 10±2 Ohm (ganz leer) bis 250±5 Ohm (voll). Es gibt keine Messung der oberen oder unteren Hälfte. Die beiden Geber sind in Reihe geschaltet, so dass sich die kombinierte Kraftstoffstandsanzeige nicht ändert, egal wie der Kraftstoffinhalt zu einem beliebigen Zeitpunkt auf die beiden Tankhälften verteilt ist. Die Reihenschaltung bedeutet jedoch auch, dass eine Anomalie in der Kraftstoffanzeige keinen Aufschluss darüber gibt, welcher Geber defekt ist. Wenn z. B. ein Geber einen offenen Stromkreis hat, wird der Kraftstoffstand immer Null anzeigen, aber man wird nicht wissen, welcher Geber defekt ist. Natürlich kann eine Nullanzeige auch durch etwas anderes als einen defekten Geber verursacht werden, z. B. durch einen Drahtbruch, einen losen Stecker usw.
Die Geber bestehen im Wesentlichen aus einem offenen Potentiometer. Es gibt eine Widerstandsbahn mit einem Schleiferarm, der von einem Schwimmer an einem Arm bewegt wird, so dass ein unterschiedlicher elektrischer Widerstand abgelesen wird, wenn sich der Schwimmer hebt und senkt. Mit der Zeit kann die Widerstandsbahn verschmutzt, korrodiert oder einfach nur abgenutzt sein, was zu uneinheitlichen oder falschen Messwerten führt. Die Geber können einzeln geprüft werden, ohne dass der Tank geöffnet werden muss. Ziehe dazu die beiden metallenen Tankabdeckungen unter der Rücksitzbank ab, löse die freigelegten elektrischen Anschlüsse auf beiden Seiten und messe dann den Widerstand an den Stiften oben auf jeder Gebereinheit.
-
Ich hab so was aehnliches grad hinter mir an meinem 1998 US E32 M3 mit dem S52 Motor. Unruhiger Leerlauf, unruhig bei Drehzahlen, keine Leistung, Fehlzuendungen, Check Control Lampe an. Manchmal sprang er sogar nicht mehr an. Da die 1998 US Ausfuehrung schon OBD2 ist, ist das Fehlerspeicher Auslesen einfacher. Fehlerspeicher zeigte an, defekter Kurbelwellensensor, auf dem Oszi konnte man sehen, dass er manchmal nicht richtig funktionierte, Messen mit Multimeter laesst nur eine grobe Aussage zu ueber den Zustand des Sensors. Eingebaut hab ich in den S52 einen neuen Hella 12 V Hallsensor, 3-polig, 12141709616, KGE war auch reif, die Membrane war richtig hart, laeuft jetzt wieder Problemlos. Die Überprüfung mit einem Oszilloskop muss ein Sinussignal in ausreichender Stärke ergeben. Bei einem Hallgeber sind lediglich die Signalspannung in Form eines Rechtecksignals und die Versorgungsspannung zu überprüfen. Es muss sich in Abhängigkeit von der Motordrehzahl ein Rechtecksignal ergeben. https://www.motor-talk.de/foru….html?attachmentId=693847
Ursachen für Probleme mit der Kurbelgehäuseentlüftung: Aufgrund von Alterung und hoher thermischer Belastung in Kombination mit den ölhaltigen Blow-By-Gasen können einzelne Komponenten der Kurbelgehäuseentlüftung undicht werden oder brechen. Dann gelangt Falschluft in das System und sorgt für die oben beschriebenen Symptome. Bei größeren Beschädigungen kann es zudem zu einer Öldampfbildung im Motorraum kommen.
-
Zum Thema Tankanzeige hab ich was gefunden, kopiert und uebersetzt:
Originally Posted by .... Short answer is that both serves as level sensors and work in Tandem. But only the driver side is actually a pump.
Long answer: the rear passenger side is not a pump because that side of the tank is naturally draining into the fuel lines where the fuel injectors/vacuum does the rest of the work. Therefore the unit on the rear passenger side is just a fuel level sensor (part number: 51712491567) for reading the Empty to Half Way point on the fuel gauge. It is also why the passenger unit is also is cheaper than the driver side.
Driver side has to function as a level sensor and pump to move the gas to the other side of the tank because of the way the tank is shaped (it has to overcome a bridge). Therefore, it is also responsible for reading the Half Way to Full reading on the fuel gauge. That said, the driver side is likely to wear out faster because it has dual function as a pump as well.
---------------------
That's not how the fuel level senders work.
Each level sender is functionally identical, and reads its own side from 10±2 ohms (all the way empty) to 250±5 ohms (completely full). There is no top or bottom half measurement. The two senders are wired in series, so no matter how the fuel contents may be distributed between the two tank halves at any instantaneous point in time, the combined fuel level reading won't change. However the series connection also means that a fuel level reading anomaly won't tell you which sender is at fault. For instance if one sender fails open circuit, then the fuel level will always read as zero but you won't know which sender is faulty. (Of course a zero reading could be due to something other than a failed sender, e.g. a broken wire, loose connector, etc.)
The senders consist essentially of an open potentiometer. There's a resistor track with a wiper arm that's moved by a fuel level float on an arm, such that a different electrical resistance is read as the float raises and lowers. Eventually the resistor track may get dirty, corroded or just plain worn out, leading to inconsistent or incorrect readings. The senders can be individually tested without opening up the tank by pulling both metal tank access covers under the rear seat base, detaching the revealed electrical connectors on both sides, then taking resistance measurements across the pins on the top of each sender assembly.
==============================
Die kurze Antwort ist, dass beide Seiten als Füllstandssensoren dienen und im Tandem arbeiten. Aber nur die Fahrerseite ist tatsächlich eine Pumpe.
Lange Antwort: Die hintere Beifahrerseite ist keine Pumpe, weil diese Seite des Tanks natürlich in die Kraftstoffleitungen abläuft, wo die Kraftstoffeinspritzdüsen/der Unterdruck den Rest der Arbeit erledigen. Daher ist die Einheit auf der hinteren Beifahrerseite nur ein Kraftstoffstandssensor (nr: 51712491567) zum Ablesen des Punktes "Leer bis zur Hälfte" auf der Kraftstoffanzeige. Das ist auch der Grund, warum die Beifahrerseite billiger ist als die Fahrerseite.
Die Fahrerseite muss als Füllstandssensor und Pumpe fungieren, um das Benzin auf die andere Seite des Tanks zu befördern, weil der Tank so geformt ist (er muss eine Brücke überwinden). Daher ist sie auch für die Anzeige "halb voll" auf der Tankanzeige verantwortlich. Allerdings verschleißt die Fahrerseite wahrscheinlich schneller, da sie auch eine Doppelfunktion als Pumpe hat.
---------------------
Das ist nicht die Funktionsweise der Kraftstoffstandgeber.
Jeder Füllstandgeber ist funktionell identisch und misst auf seiner Seite von 10±2 Ohm (ganz leer) bis 250±5 Ohm (voll). Es gibt keine Messung der oberen oder unteren Hälfte. Die beiden Geber sind in Reihe geschaltet, so dass sich die kombinierte Kraftstoffstandsanzeige nicht ändert, egal wie der Kraftstoffinhalt zu einem beliebigen Zeitpunkt auf die beiden Tankhälften verteilt ist. Die Reihenschaltung bedeutet jedoch auch, dass eine Anomalie in der Kraftstoffanzeige keinen Aufschluss darüber gibt, welcher Geber defekt ist. Wenn z. B. ein Geber einen offenen Stromkreis hat, wird der Kraftstoffstand immer Null anzeigen, aber Sie werden nicht wissen, welcher Geber defekt ist. (Natürlich kann eine Nullanzeige auch durch etwas anderes als einen defekten Geber verursacht werden, z. B. durch einen Drahtbruch, einen losen Stecker usw.)
Die Geber bestehen im Wesentlichen aus einem offenen Potentiometer. Es gibt eine Widerstandsbahn mit einem Schleiferarm, der von einem Schwimmer an einem Arm bewegt wird, so dass ein unterschiedlicher elektrischer Widerstand abgelesen wird, wenn sich der Schwimmer hebt und senkt. Mit der Zeit kann die Widerstandsbahn verschmutzt, korrodiert oder einfach nur abgenutzt sein, was zu uneinheitlichen oder falschen Messwerten führt. Die Geber können einzeln geprüft werden, ohne dass der Tank geöffnet werden muss. Ziehen Sie dazu die beiden metallenen Tankabdeckungen unter der Rücksitzbank ab, lösen Sie die freigelegten elektrischen Anschlüsse auf beiden Seiten und messen Sie dann den Widerstand an den Stiften oben auf jeder Gebereinheit.
Übersetzt mit http://www.DeepL.com/Translator (kostenlose Version)
-
part 3
Myth # 3: A soft brake pedal is the result of pad fade
The all too familiar mushy brake pedal is caused by overheated brake fluid, not overheated pads. Repeated heavy use of the brakes may lead to "brake fade". There are two distinct varieties of brake fade A) When the temperature at the interface between the pad and the rotor exceeds the thermal capacity of the pad, the pad loses friction capability due largely to out gassing of the binding agents in the pad compound. The brake pedal remains firm and solid but the car will not stop. The first indication is a distinctive and unpleasant smell which should serve as a warning to back off, B) When the fluid boils in the calipers air bubbles are formed. Since air is compressible, the brake pedal becomes soft and "mushy" and pedal travel increases. You can probably still stop the car by pumping the pedal but efficient modulation is gone. This is a gradual process with lots of warning.
Myth # 4: Boiled brake fluid will be serviceable after it cools
Once the brake fluid inside the caliper has boiled, it has lost a significant percentage of its original boiling point and should be replaced. It is not necessary to remove all of the fluid in the system, just bleed until clear fluid appears.
Myth # 5: Because they are non-hygroscopic, silicon based brake fluids are suitable for use in high performance cars
DOT 3 AND DOT 4 brake fluids are ether based and are hygroscopic in nature - i.e. they absorb water vapor. As the braking system in not quite airtight, a significant amount of water can be absorbed from the atmosphere in the course of a year. A 3% water content in brake fluid drops the boiling point as much as 170 degrees F. Brake fluid should be completely replaced annually. DOT 5 fluids are silicon based and are non-hygroscopic, which is good. They are also subject to frothing from high frequency vibration, which gives a soft pedal. Soft brake pedals may be OK in non-high performance cars (in fact, most drivers accept mushy brake pedals as normal) but they are not acceptable in any situation where the driver intends to modulate braking at high force values.
Myth # 6: The brake fluid reservoir should be topped up during routine service
In most modern passenger cars, the brake fluid reservoir is designed with a specific volume and is equipped with an internal float. The volume corresponds to the amount of fluid that will be displaced when the pads have worn to the point of replacement plus a generous reserve. When the replacement point is reached, the descending float completes an electrical circuit and a light appears on the dash warning the driver that the pads should be replaced. If the brake fluid is topped up the first warning of warn out pads will be the screech of steel backing plate against iron disc. This will be both annoying and expensive.
By Carroll Smith, Consulting Engineer at StopTech
with pics here https://www.centricparts.com/m…d-Brake-Disc-8-2018_1.pdf -
part 2
Prevention
There is only one way to prevent this sort of thing - following proper break in procedures for both pad and disc and use the correct pad for your driving style and conditions. All high performance after market discs and pads should come with both installation and break in instructions. The procedures are very similar between manufacturers. With respect to the pads, the bonding resins must be burned off relatively slowly to avoid both fade and uneven deposits. The procedure is several stops of increasing severity with a brief cooling period between them. After the last stop, the system should be allowed to cool to ambient temperature. Typically, a series of ten increasingly hard stops from 60mph to 5 mph with normal acceleration in between should get the job done for a high performance street pad. During pad or disc break-in, do not come to a complete stop, so plan where and when you do this procedure with care and concern for yourself and the safety of others. If you come to a complete stop before the break-in process is completed there is the chance for non-uniform pad material transfer or pad imprinting to take place and the results will be what the whole process is trying to avoid. Game over.
In terms of stop severity, an ABS active stop would typically be around 0.9 G’s and above, depending on the vehicle. What you want to do is stop at a rate around 0.7 to 0.9 G's. That is a deceleration rate near but below lock up or ABS intervention. You should begin to smell pads at the 5th to 7th stop and the smell should diminish before the last stop. A powdery gray area will become visible on the edge of the pad (actually the edge of the friction material in contact with the disc - not the backing plate) where the paint and resins of the pad are burning off. When the gray area on the edges of the pads are about 1/8" deep, the pad is bedded.
For a race pad, typically four 80mph to 5 and two 100mph to 5, depending on the pad, will also be necessary to raise the system temperatures during break-in to the range that the pad material was designed to operate at. Hence, the higher temperature material can establish its layer completely and uniformly on the disc surface.
Fortunately the procedure is also good for the discs and will relieve any residual thermal stresses left over from the casting process (all discs should be thermally stress relieved as one of the last manufacturing processes) and will transfer the smooth layer of pad material onto the disc. If possible, new discs should be bedded with used pads of the same compound that will be used going forward. Again, heat should be put into the system gradually - increasingly hard stops with cool off time in between. Part of the idea is to avoid prolonged contact between pad and disc. With abrasive pads (which should not be used on high performance cars) the disc can be considered bedded when the friction surfaces have attained an even blue color. With the carbon metallic type pads, bedding is complete when the friction surfaces of the disc are a consistent gray or black. In any case, the discoloration of a completely broken in disc will be complete and uniform. Depending upon the friction compound, easy use of the brakes for an extended period may lead to the removal of the transfer layer on the discs by the abrasive action of the pads. When we are going to exercise a car that has seen easy brake use for a while, a partial re-bedding process will prevent uneven pick up. The driver can feel a 0.0004" deposit or TV on the disc. 0.001" is annoying. More than that becomes a real pain. When deposit are present, by having isolated regions that are proud of the surface and running much hotter than their neighbors, cementite inevitably forms and the local wear characteristics change which results in ever increasing TV and roughness. Other than proper break in, as mentioned above, never leave your foot on the brake pedal after you have used the brakes hard. This is not usually a problem on public roads simply because, under normal conditions, the brakes have time to cool before you bring the car to a stop (unless, like me, you live at the bottom of a long steep hill). In any kind of racing, including autocross and "driving days" it is crucial. Regardless of friction material, clamping the pads to a
hot stationary disc will result in material transfer and discernible "brake roughness". What is worse, the pad will leave the telltale imprint or outline on the disc and your sin will be visible to all and sundry.
The obvious question now is "is there a "cure" for discs with uneven friction material deposits?" The answer is a conditional yes. If the vibration has just started, the chances are that the temperature has never reached the point where cementite begins to form. In this case, simply fitting a set of good "semi-metallic" pads and using them hard (after bedding) may well remove the deposits and restore the system to normal operation but with upgraded pads. If only a small amount of material has been transferred i.e. if the vibration is just starting, vigorous scrubbing with garnet paper may remove the deposit. As many deposits are not visible, scrub the entire friction surfaces thoroughly. Do not use regular sand paper or emery cloth as the aluminum oxide abrasive material will permeate the cast iron surface and make the condition worse. Do not bead blast or sand blast the discs for the same reason. The only fix for extensive uneven deposits involves dismounting the discs and having them Blanchard ground - not expensive, but inconvenient at best. A newly ground disc will require the same sort of bedding in process as a new disc. The trouble with this procedure is that if the grinding does not remove all of the cementite inclusions, as the disc wears the hard cementite will stand proud of the relatively soft disc and the thermal spiral starts over again. Unfortunately, the cementite is invisible to the naked eye.
Taking time to properly bed your braking system pays big dividends but, as with most sins, a repeat of the behavior that caused the trouble will bring it right back.Myth # 2: Racing brake discs are made from steel
To digress for a moment "steel discs" are a misnomer frequently used by people who should know better. This group includes TV commentators and drivers being interviewed. Except for some motorcycles and karts, all ferrous discs are made from cast iron - an excellent material for the job. While steel has a higher tensile strength, cast iron is many times stronger than disc brake requirements. Its thermal transfer characteristics are significantly better than those of steel so that the heat generated at the interface between pad and disc is efficiently carried through the friction faces to the interior surface of the disc and into the vanes from where the heat is dissipated into the air stream. Cast iron is more dimensionally stable at elevated
temperature than steel and is a better heat sink - so let us hear no more talk of "steel" brake discs
-
Myth # 1: Brake judder and vibration is caused by discs that have been warped from excessive heat
The term "warped brake disc" has been in common use in motor racing for decades. When a driver reports a vibration under hard braking, inexperienced crews, after checking for (and not finding) cracks often attribute the vibration to "warped discs". They then measure the disc thickness in various places, find significant variation and the diagnosis is cast in stone. When disc brakes for high performance cars arrived on the scene we began to hear of "warped brake discs" on road going cars, with the same analyses and diagnoses. Typically, the discs are resurfaced to cure the problem and, equally typically, after a relatively short time the roughness or vibration comes back. Brake roughness has caused a significant number of cars to be bought back by their manufacturers under the "lemon laws". This has been going on for decades now - and, like most things that we have cast in stone, the diagnoses are wrong. With one qualifier, presuming that the hub and wheel flange are flat and in good condition and that the wheel bolts or hat mounting hardware is in good condition, installed correctly and tightened uniformly and in the correct order to the recommended torque specification, in more than 40 years of professional racing, including the Shelby/Ford GT 40s – one of the most intense brake development program in history - I have never seen a warped brake disc. I have seen lots of cracked discs, (FIGURE 1) discs that had turned into shallow cones at operating temperature because they were mounted rigidly to their attachment bells or top hats, (FIGURE 2) a few where the friction surface had collapsed in the area between straight radial interior vanes, (FIGURE 3) and an untold number of discs with pad material unevenly deposited on the friction surfaces - sometimes visible and more often not. (FIGURE 4)
In fact every case of "warped brake disc" that I have investigated, whether on a racing car or a street car, has turned out to be friction pad material transferred unevenly to the surface of the disc. This uneven deposition results in thickness variation (TV) or run-out due to hot spotting that occurred at elevated temperatures. In order to understand what is happening here, we will briefly investigate the nature of the stopping power of the disc brake system.
The Nature of Braking Friction Friction is the mechanism that converts dynamic energy into heat. Just as there are two sorts of friction between the tire and the road surface (mechanical gripping of road surface irregularities by the elastic tire compound and transient molecular adhesion between the rubber and the road in which rubber is transferred to the road surface), so there are two very different sorts of braking friction - abrasive friction and adherent friction. Abrasive friction involves the breaking of the crystalline bonds of both the pad material and the cast iron of the disc. The breaking of these bonds generates the heat of friction. In abrasive friction, the bonds between crystals of the pad material (and, to a lesser extent, the disc material) are permanently broken. The harder material wears the softer away (hopefully the disc wears the pad). Pads that function primarily by abrasion have a high wear rate and tend to fade at high temperatures. When these pads reach their effective temperature limit, they will transfer pad material onto the disc face in a random and uneven pattern. It is this "pick up" on the disc face that both causes the thickness variation measured by the technicians and the roughness or vibration under the brakes reported by the drivers.
With adherent friction, some of the pad material diffuses across the interface between the pad and the disc and forms a very thin, uniform layer of pad material on the surface of the disc. As the friction surfaces of both disc and pad then comprise basically the same material, material can now cross the interface in both directions and the bonds break and reform. In fact, with adherent friction between pad and disc, the bonds between pad material and the deposits on the disc are transient in nature - they are continually being broken and some of them are continually reforming.
There is no such thing as pure abrasive or pure adherent friction in braking. With many contemporary pad formulas, the pad material must be abrasive enough to keep the disc surface smooth and clean. As the material can cross the interface, the layer on the disc is constantly renewed and kept uniform - again until the temperature limit of the pad has been exceeded or if the pad and the disc have not been bedded-in completely or properly. In the latter case, if a uniform layer of pad material transferred onto the disc face has not been established during bedding or break-in, spot or uncontrolled transfer of the material can occur when operating at high temperatures. The organic and semi-metallic pads of the past were more abrasive than adherent and were severely temperature limited. All of the current generation of "metallic carbon", racing pads utilize mainly adherent technology as do many of the high end street car pads and they are temperature stable over a much higher range. Unfortunately, there is no free lunch and the ultra high temperature racing pads are ineffective at the low temperatures typically experienced in street use. Therefore - there is no such thing as an ideal "all around" brake pad. The friction material that is quiet and functions well at relatively low temperatures around town will not stop the car that is driven hard. If you attempt to drive many cars hard with the OEM pads, you will experience pad fade, friction material transfer and fluid boiling - end of discussion. The true racing pad, used under normal conditions will be noisy and will not work well at low temperatures around town.
Ideally, in order to avoid either putting up with squealing brakes that will not stop the car well around town or with pad fade on the track or coming down the mountain at speed, we should change pads before indulging in vigorous automotive exercise. No one does. The question remains, what pads should be used in high performance street cars - relatively low temperature street pads or high temperature race pads? Strangely enough, in my opinion, the answer is a high performance street pad with good low temperature characteristics. The reason is simple: If we are driving really hard and begin to run into trouble, either with pad fade or boiling fluid (or both), the condition(s) comes on gradually enough to allow us to simply modify our driving style to compensate. On the other hand, should an emergency occur when the brakes are cold, the high temperature pad is simply not going to stop the car. As an example, during the mid 1960s, those of us at Shelby American did not drive GT 350 or GT 500 Mustangs as company cars simply because they were equipped with Raybestos M-19 racing pads and none of our wives could push on the brake pedal hard enough to stop the car in normal driving. Regardless of pad composition, if both disc and pad are not properly broken in, material transfer between the two materials can take place in a random fashion - resulting is uneven deposits and vibration under braking. Similarly, even if the brakes are properly broken, if, when they are very hot or following a single long stop from high speed, the brakes are kept applied after the vehicle comes to a complete stop it is possible to leave a telltale deposit behind that looks like the outline of a pad. This kind of deposit is called pad imprinting and looks like the pad was inked for printing like a stamp and then set on the disc face. It is possible to see the perfect outline of the pad on the disc. (FIGURE 5)It gets worse. Cast iron is an alloy of iron and silicon in solution interspersed with particles of carbon. At elevated temperatures, inclusions of carbides begin to form in the matrix. In the case of the brake disk, any uneven deposits - standing proud of the disc surface - become hotter than the surrounding metal. Every time that the leading edge of one of the deposits rotates into contact with the pad, the local temperature increases. When this local temperature reaches around 1200 or 1300 degrees F. the cast iron under the deposit begins to transform into cementite (an iron carbide in which three atoms of iron combine with one atom of carbon). Cementite is very hard, very abrasive and is a poor heat sink. If severe use continues the system will enter a self-defeating spiral - the amount and depth of the cementite increases with increasing temperature and so does the brake roughness. Drat!
-
uraltes Thema, aber es wurde mal etwas geaendert bei einigen Motoren beim KWS von 5 auf 12 Volt, hier mal die Service Info, recall, wurde an meinem M3 USA Version kostenlos durchgefuehrt
SUBJECT: Voluntary Emissions Recall Campaign No. 99E-A01
MODEL: E36 - 323i and 328i with M52 engine produced 6/95 - 12/98
E36 - M3 with S52 engine produced 1/96 - 12/98
E39 - 528i with M52 engine produced 3/96 - 8/98
Z3 - with M52 engine produced 7/96 - 9/98
Z3 - with S52 engine produced 1/98 - 1/99Situation: BMW of North America, Inc. has initiated a Voluntary Emission-Recall Campaign to correct vehicles that may have a faulty crankshaft position sensor. A customer notification letter will be sent out by May 1999. This action will address the illumination of the "Check Engine" lamp and the following faults being set in the Engine Control Module (ECM/DME):
Fault Code 83 - Crankshaft position sensor
Fault Code 244 - Crankshaft segment timing
Cause: Internal failure of the sensor
Affected Vehicles: This recall involves E36,E39 and Z3 vehicles with M52 and S52 engines which were produced from 6/95 - 1/99.The procedure given in this bulletin must be performed on all affected vehicles identified on DCS. (A copy of the letter which will be sent to all affected customers in a staggered mailing is attached to this S.I.)
In order to determine if a specific vehicle is affected by this Recall , it will be necessary to utilize the "Service Menu" of the DCS (Dealer Communication System). Based on the response of the system, either proceed with the corrective action or take no further action.
The Chassis Number Ranges listed below are only for informational purposes and are not to be considered as the only deciding factor.Model Chassis Number Range
328i/4 AV15000-AV25219 LB10002-LB10479
328iA/4 AV35000-AV65890 LB30004-LB31291
M3 Conv. EC42001-EC43174
M3A Conv. EC38005-EC40502
M3/4 EE05001-EE09665
M3A/4 EE10002-EE14165
M3/2 EY72008-EY81023
328i/2 ET00009-ET08059
328iA/2 ET30015-ET38036328iC ET60003-ET67400
328iCA ET90006-ET99999 EY85000-EY91136
323i/2 EH40001-EH43356
323iA/2 EH60002-EH63662
323iC EA15000-EA18321
323iCA EM20001-EM23874
528i BV50010-BV56850
528iA BW00026-BW49997
GT90000-GT97785
Z3 LC00020-LC16358
Z3A LB62000-LB63999
LG20000-LG20708
Z3 M coupe LC60010-LC60950
Z3 M roadster LC85002-LC89198Correction: The crankshaft position sensor needs to be replaced with the same type of sensor that is currently being used on the M52TU engine. Along with replacing the sensor an adapter harness must also be installed in order to supply the sensor with a 12V operating voltage instead of the 5 volts currently being supplied by the DME.
Parts Information: Part Number Description Qty.
12 14 1 709 616 Crankshaft position sensor 1
12 51 4 592 703 Adapter harness 1
12 14 1 748 398 O - ring 17x3 1
61 13 1 377 134 Cable tie 2Mehr Details mit Installationsinstruktionen etc hier https://web.archive.org/web/20…shaft_Position_Sensor.pdf
-
Nominal values, Tightening Torques, Specifications all older models, ABS test values https://e30.dev/?load=tis&l=nvstt
Tightening torques 136 pages torque specs for download http://www.e38.org/bmw_torq.pdf
-
die Bilder oben gehn nicht mehr, hier noch mal hochgeladen